Leptonic CP violation at large θ_{13}

Patrick Huber

Center for Neutrino Physics – Virginia Tech

LowNu 2011 6th International Workshop on Low energy neutrino physics 9-12, November, 2011 Seoul National University, South Korea

The Question

If $\sin^2 2\theta_{13} \sim 0.1$, as indicated by recent data, what are the implications for future facilities?

I break this question down into the following more focused questions:

- Will the mass hierarchy have been determined?
- Are new experiments beyond NO ν A and T2K necessary?
- Are superbeams sufficient?

Eight-fold degeneracy

By measuring only two numbers n_{ν} and $n_{\bar{\nu}}$, the following solutions remain

- intrinsic ambiguity for fixed α
- Disappearance determines only $|\Delta m_{31}^2| \Rightarrow \mathcal{T}_s := \Delta m_{31}^2 \to -\Delta m_{31}^2$
- Disappearance determines only $\sin^2 2\theta_{23} \Rightarrow \mathcal{T}_t := \theta_{23} \to \pi/2 \theta_{23}$
- Both transformations $\mathcal{T}_{st} := \mathcal{T}_s \oplus \mathcal{T}_t$

For studies of CP violation the sign ambiguity \mathcal{T}_s poses the most severe problems.

The current generation

<mark>S</mark> etup	t_{ν} [yr]	$t_{\bar{\nu}}$ [yr]	P_{Th} or P_{Target}	<i>L</i> [km]	Detector	$m_{ m Det}$
Double Chooz	_	3	8.6 GW	1.05	L. scint.	8.3 t
<mark>D</mark> aya Bay	-	3	17.4 GW	1.7	L. scint.	80 t
RENO	-	3	16.4 GW	1.4	L. scint.	15.4 t
T2K	5	-	0.75 MW	295	Water	22.5 kt
ΝΟνΑ	3	3	0.7 MW	810	TASD	15 kt

Mass hierarchy

90% CL, combines T2K, NO ν A, Daya Bay, Double Chooz and RENO At this CL MINOS and T2K have discovered $\theta_{13} \neq 0$!

At 3σ this plot would be essentially empty!

PH, M. Lindner, T. Schwetz, W. Winter, JHEP 11 044 (2009), arXiv:0907.1896.

CPV without new experiments?

PH, M. Lindner, T. Schwetz, W. Winter, JHEP 11 044 (2009), arXiv:0907.1896. Includes Project X and T2K running at 1.7 MW.

Atmospheric data

A number of new atmospheric data samples is on the horizon

- INO
- IceCube Deep Core
- PINGU?
- next large (few 100 kt) water Cerenkov detectors

It has been shown in a large number of publications that all these data on their own but in particular in combination with data from beams is very effective in resolving degeneracies esp. at large θ_{13} .

Atmospheric + LBL data

PH, Maltoni, Schwetz, Phys.Rev. D71 (2005) 053006 T2HK-like setup, 9 Mt yr atmospheric exposure

Mass hierarchy from LBL

Are superbeams enough?

SB reach CPF of 0.25-0.8 NF reaches CPF of 0.85-0.9

NF best for **all** values of θ_{13} !

Are superbeams enough?

 $\Delta \delta \simeq \frac{1}{12} (1 - \text{CPF})$ SB $\Delta \delta = 6^{\circ} - 25^{\circ}$ NF $\Delta \delta = 3^{\circ} - 5^{\circ}$

BUT, wildly different assumptions about systematics, this comparison is not valid!

This requires a MUCH more detailed analysis!

Systematics

When I speak of some quantity is 'known' in the following I mean, known at a level of percent or better from an actual measurement or a theoretical calculation[†]

[†] *i.e.* from a controlled approximation, where the error term can be bounded reliably from above

The Idea

In order to measure CP violation and to break the correlation with θ_{13} we need to reconstruct one out of these

$$P(\nu_{\mu} \rightarrow \nu_{e}) \text{ or } P(\nu_{e} \rightarrow \nu_{\mu})$$

and one out of these

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \text{ or } P(\bar{\nu}_{e} \to \bar{\nu}_{\mu})$$

and we'd like to do that at the percent level accuracy

The Reality

We do not measure probabilities, but event rates!

$$R^{\alpha}_{\beta} = N \int dE \, \Phi_{\alpha}(E) \, \sigma_{\beta}(E) \, \epsilon_{\beta}(E) \, P(\nu_{\alpha} \to \nu_{\beta}, E)$$

In order the reconstruct P, we have to know

- N overall normalization (fiducial mass)
- Φ_{α} flux of ν_{α}
- σ_{β} x-section for ν_{β}
- ϵ_{β} detection efficiency for ν_{β}

Note: $\sigma_{\beta}\epsilon_{\beta}$ always appears in that combination, hence we can define an effective cross section $\tilde{\sigma}_{\beta} := \sigma_{\beta}\epsilon_{\beta}$

The Problem

Even if we ignore all energy dependencies of efficiencies, x-sections *etc.*, we generally can not expect to know any ϕ or any $\tilde{\sigma}$. Also, we won't know any kind of ratio

nor

$$\frac{\tilde{\sigma}_{\alpha}}{\tilde{\sigma}_{\bar{\alpha}}} \quad \text{or} \quad \frac{\tilde{\sigma}_{\alpha}}{\tilde{\sigma}_{\beta}}$$

 $\frac{\Phi_{\alpha}}{\Phi_{\bar{\alpha}}} \quad \text{or} \quad \frac{\Phi_{\alpha}}{\Phi_{\beta}}$

Note: Even if we may be able to know σ_e/σ_μ from theory, we won't know the corresponding ratio of efficiencies ϵ_e/ϵ_μ

The Solution

Measure the un-oscillated event rate at a near location and everything is fine, since all uncertainties will cancel, (provided the detectors are identical and have the same acceptance)

 $\frac{R_{\alpha}^{\alpha}(\operatorname{far})L^{2}}{R_{\alpha}^{\alpha}(\operatorname{near})} = \frac{N_{\operatorname{far}}\Phi_{\alpha}\,\tilde{\sigma}_{\alpha}\,P(\nu_{\alpha}\to\nu_{\alpha})}{N_{\operatorname{near}}\Phi_{\alpha}\,\tilde{\sigma}_{\alpha}1}$ $\frac{R_{\alpha}^{\alpha}(\operatorname{far})L^{2}}{R_{\alpha}^{\alpha}(\operatorname{near})} = \frac{N_{\operatorname{far}}}{N_{\operatorname{near}}}\,P(\nu_{\alpha}\to\nu_{\alpha})$ And the error on $\frac{N_{\operatorname{far}}}{N_{\operatorname{near}}}$ will cancel in the ν to $\bar{\nu}$ comparison.

Some practical issues

- same acceptance may require a not-so-near near detector
- near and far detector cannot be really identical
- some energy dependencies will remain

In principle all those factors can be controlled by careful design and analysis with good accuracy, see *e.g.* MINOS.

But ...

This all works only for disappearance measurements!

$$\frac{R^{\alpha}_{\beta}(\operatorname{far})L^{2}}{R^{\alpha}_{\beta}(\operatorname{near})} = \frac{N_{\operatorname{far}}\Phi_{\alpha}\,\tilde{\sigma}_{\beta}\,P(\nu_{\alpha}\to\nu_{\beta})}{N_{\operatorname{near}}\Phi_{\alpha}\,\tilde{\sigma}_{\alpha}\,1}$$
$$\frac{R^{\alpha}_{\beta}(\operatorname{far})L^{2}}{R^{\alpha}_{\beta}(\operatorname{near})} = \frac{N_{\operatorname{far}}\,\tilde{\sigma}_{\beta}\,P(\nu_{\alpha}\to\nu_{\beta})}{N_{\operatorname{near}}\,\tilde{\sigma}_{\alpha}\,1}$$

Since $\tilde{\sigma}$ will be different for ν and $\bar{\nu}$, this is a serious problem. And we can not measure $\tilde{\sigma}_{\beta}$ in a beam of ν_{α} .

Remarks

- this discussion completely neglected backgrounds
- the ν_e component of a superbeam will not help much, since Φ_{μ}/Φ_e is essentially unknown
- a β -beam can probably measure $\tilde{\sigma}_e$ but not $\tilde{\sigma}_{\mu}$
- and we really need to know the ratio (at least)

A detailed example ...

Details to be found in PH, Mezzetto, Schwetz, JHEP 0803:021,2008., overall T2HK-like.

- WC far detector $m = 500 \,\mathrm{kt}$ and $L = 295 \,\mathrm{km}$
- WC near detector m = 1 kt and L = 2 km
- same flux for near and far (except for L^2 -scaling)
- same (energy dependent) efficiencies in both detectors

All sensitivity calculation are performed with GLOBES 3.0 – no degeneracies taken into account.

Systematical errors

		0.05	69 C).1	0.15	0.19	0.25	0.
				1	1		I	1
1	normalization	of ND – 5%						
2	normalization	of FD – 5%						
3	energy calibration of ND (e-	like) – 2.5%						
4	energy calibration of ND (μ –	like) – 2.5%	-	:-+:l.			fa	4:
5	energy calibration of FD (e-	like) – 2.5%	-stat	istics only		-06	ault systema	atics
6	energy calibration of FD (μ -	like) – 2.5%						
7	v –beam, v_{μ} –flux normaliz	ation – 15%						
8	v -beam, v_{μ} -flu	ux tilt – 15%						
9	v-beam, v _e -flux normaliz	ation – 15%						
10	ν -beam, $\overline{\nu}_{e}$ -flux normaliz	ation – 15%						
11	v –beam, \overline{v}_{μ} –flux normaliz	ation – 15%						
12	$\overline{ u}$ -beam, $\overline{ u}_{\mu}$ -flux normaliz	ation – 20%						
13	$\overline{ u}$ –beam, $\overline{ u}_{\mu}$ –flu	ux tilt – 20%						
14	\overline{v} –beam, \overline{v}_{e} –flux normaliz	ation – 20%						
15	$\overline{\nu}$ -beam, ν_{e} -flux normaliz	ation – 20%						
16	$\overline{ u}$ –beam, $ u_{\mu}$ –flux normaliz	ation – 20%						
17	total v_e cross section \otimes effici	ency – 10%						
18	total $\overline{v}_{\rm e}$ cross section \otimes effici	ency – 10%						
19	total $ u_{\mu}$ cross section \otimes effici	ency – 10%						
20	total $\overline{ u}_{\mu}$ cross section \otimes effici	ency – 10%						
21	ratio of QE/NQE cross sec	tions – 20%						
22	NC cross section \otimes efficiency in	n FD – 10%						
23	ratio of $\overline{\nu}/\nu$ NC cross sections \otimes efficiencies	in FD – 5%						
24	NC cross section \otimes efficiency for v -beam in	n ND – 10%						
25	NC cross section \otimes efficiency for $\overline{\nu}-\text{beam}$ in	n ND – 10%						
26 e	rror on muon miss–identification in ND for v –b	beam – 10%						
27 er	ror on muon miss–identification in ND for \overline{v} –b	beam – 10%						
		$ ilde{\sigma}_{\mu}/ ilde{\sigma}_{e}$						
		$\tilde{\sigma}_{\overline{v}}/\tilde{\sigma}_{\overline{v}}$						
$\sin^2 2\theta_{13} = 0.03$		$ ilde{\sigma}_{e} \Phi_{\mu}$						
		Φ_μ/Φ_{e}						
		$ ilde{\sigma}_{e}$						
GLo	DBES 2007	$ ilde{\sigma}_{\mu}$						
		0.05	59 C).1	0.15	0.19 δ _{CP} [π]	0.25	0.

These uncertainties are implemented using the so called pull-approach. We have all together 28 such pulls.

Here, no near detector

red - sys.=0 blue - 5 \times sys.

Disclaimer: I do not claim that any error actually will have that size in a real experiment nor that our simulation is exact.

The point of the following is to show that a near detector on its own won't take care of all the systematics. Additional information will be needed!

Impact of Near Detector

Near detector does not eliminate all systematics

 $\tilde{\sigma}_{\mu}/\tilde{\sigma}_{e}$ is the by far most important parameter

Large θ_{13} is the most difficult region

Impact of fluxes

Even perfectly know fluxes plus near detector do **not** eliminate systematics

Large θ_{13} is the most difficult region

Very Low Energy NF

8 GeV protons from the FNAL booster on thick Be target – 3 GeV muon energy

In a 200t near detector, $10^5 - 10^6 \nu_{\mu}/\bar{\nu}_e$ CC events per year

Use of μ^-/μ^+ beams allows to measure $\tilde{\sigma}_{\mu}/\tilde{\sigma}_e$ and $\tilde{\sigma}_{\bar{\mu}}/\tilde{\sigma}_{\bar{e}}$

Low Luminosity Low energy Neutrino Factory

 L^3NF

1/20-1/10 of luminosity - L³NF as good as the best SB

⇒ Start somewhere between 1/20 and 1/10 ⇒ No muon cooling ⇒ Use existing proton infrastructure at FNAL ⇒ Upgrade to full luminosity

Summary

- At large θ₁₃ leptonic CP violation still can not be done by existing experiments
- At large θ_{13} many degeneracies can be resolved by atmospheric neutrino data
- At large θ_{13} systematics will be key to CP measurement
- Superbeams can not constraint the crucial $\tilde{\sigma}_{\mu}/\tilde{\sigma}_{e}$ and $\tilde{\sigma}_{\bar{\mu}}/\tilde{\sigma}_{\bar{e}}$ ratios in their near detector
- Neutrino factories will ultimately provide the best precision

References

- LBNE curves are provided by Sam Zeller as defined by the LBNE physics working group as of fall 2010 and have been computed by Lisa Whitehead
- LBNO curves are taken from Agarwalla, *et al.* arXiv:1109.6526 and have been provided by Tracey Li
- T2HK curves are taken from the T2HK LOI.
- SPL and beta beam curves (BB100) are taken from the Euro- ν WP6 report 2011
- Amtospheric data sensitivity in large WC on mass hierarchy from Euro- ν WP6 report 2010
- Neutrino Factory curves are taken from the IDS-NF IDR
- 2025 data from PH, *et al.* JHEP 11 044 (2009).

Future Options

name	baseline	type	mass	power	sec. in year	years	sig. syst.
LBNE	1300	WC/LAr	200/33	0.7MW	2×10^7	5+5	1%
LBNE+ Pro. X	1300	WC/LAr	200/33	2.3MW	2×10^7	5+5	1%
LBNO 33kt	2300	LAr	33	1.7MW	$1.7 imes 10^7$	5+5	5%
LBNO 100kt	2300	LAr	100	1.7MW	$1.7 imes 10^7$	5+5	5%
T2HK	295	WC	560	1.66MW	1×10^7	2.1+2.9	5%
SPL	130	WC	440	4MW	1×10^7	2+8	2%
BB100	130	WC	440	$1.1 imes 10^{18} { m Ne}$	1×10^7	5+5	2%
				$2.9 imes 10^{18}$ He			
IDS-NF 2.0	4000+7500	MIND	100+50	4MW	1×10^7	5+5	1.4%
MIND LE	2000	MIND	100	4MW	1×10^7	5+5	1.4%